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ABSTRACT 

Latent class analysis (LCA) is a statistical method used to identify unobserved subgroups in a 

population with a chosen set of indicators. Given the increasing popularity of LCA, our aim is to 

equip psychological researchers with the theoretical and statistical fundamentals that we believe 

will facilitate the application of LCA models in practice. In this article, we provide answers to 10 

frequently asked questions about LCA. The questions included in this article were fielded from 

our experience consulting with applied researchers interested in using LCA. The major topics 

include a general introduction in the LCA; an overview of class enumeration (e.g., deciding on 

the number of classes), including commonly used statistical fit indices; substantive interpretation 

of LCA solutions; estimation of covariates and distal outcome relations to the latent class 

variable; data requirements for LCA; software choices and considerations; distinctions and 

similarities among LCA and related latent variable models; and extensions of the LCA model. 

To illustrate the modeling ideas described in this article, we present an applied example using 

LCA. Specifically, we use LCA to model individual differences in positive youth development 

among college students and analyze demographic characteristics as covariates and a distal 

outcome of overall life satisfaction. We also include key references that direct readers to more 

detailed and technical discussions of these topics for which we provide an applied and 

introductory overview. We conclude by mentioning future developments in research and 

practice, including advanced cross-sectional and longitudinal extensions of LCA. 

Keywords: classification, finite mixture models, latent class analysis, latent profile analysis, 

heterogeneity  
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PUBLIC SIGNIFICANCE STATEMENT 

In this article, we answer ten frequently asked questions about the technical and applied 

underpinnings of latent class analysis (LCA), a statistical approach to understanding 

unobservable within-group differences in a population. Our goal is to provide readers with an 

introductory and conceptual understanding of LCA to inform appropriate application and 

interpretation of these models in research practice.  
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 Ten Frequently Asked Questions about Latent Class Analysis  

Latent class analysis (LCA) is an analytic technique that has become increasingly popular 

among psychological researchers. The main goal of LCA is to identify groups, called latent 

classes, based on responses to a set of observed indicators. LCA has been used to identify 

subgroups in a range of substantive areas, including differential diagnosis among mental 

disorders (Cloitre, Garvert, Weiss, Carlson, & Bryant, 2014), profiles of school readiness among 

youth (Quirk, Nylund-Gibson, & Furlong, 2013), and patterns of acculturation among ethnic 

minorities (Jang, Park, Chiriboga, & Kim, 2017). LCA belongs to a larger family of latent 

variable techniques called finite mixture models, which comprises a wide range of cross-

sectional and longitudinal models that all involve one or more latent class variables.  

In this article, we compile what we believe to be the top 10 questions that a researcher 

new to LCA would ask. These questions are not exhaustive, but we hope that our introductory 

discussion and an illustrative applied example of LCA will establish an appropriate foundation 

for understanding these models and the potential contribution they can make to a range of areas 

in psychological research. We include references of applied, statistical, and theoretical articles 

throughout to facilitate further learning in these respective areas.  

Given the nascence of mixture models in psychological research, our responses to the 

questions in this article are conditioned on the current status of scholarly knowledge on these 

models and focus on the latent class analysis model specifically (rather than all mixture models). 

Although there are many areas where best practices for the application of these models have not 

been firmly established, active methodological research continues to advance our understanding 

of how LCA, and mixture models more generally, perform in data analysis conditions. 

Notwithstanding the infancy of LCA compared to other modeling traditions like factor analysis, 
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however, there has been a steady growth of publications in which LCA is applied, as illustrated 

in Figure 1. 

1. What is Latent Class Analysis (LCA)? 

 LCA is a statistical method that can be used to identify and describe latent classes, or 

“hidden groups,” within a population. Classes may be thought of as unobserved “subgroups” or 

“typologies” that characterize heterogeneity in a population with respect to a given phenomenon. 

Concretely, this method uses responses to a chosen set of indicators to identify groups of people 

that are alike each other. One useful way to place LCA among other common latent variable 

models is to think of LCA as a way to group similar people together, whereas factor analysis 

groups items. The groups in LCA are unobserved (latent) and are based on the individuals’ set of 

responses to the indicators. Thus, LCA can be thought of as a “person-centered” approach to 

creating empirically-derived typologies, contrasting the dominant “variable-centered” tradition 

that generally requires arbitrary cutoffs for classifying or differentiating among individual cases 

(Nylund, Bellmore, Nishina, & Graham, 2007). Furthermore, unlike other classification 

techniques such as cluster analysis or k-means clustering, LCA is model-based and permits a 

mathematical evaluation of how well a proposed LCA model represents the data. Finally, LCA is 

a cross-sectional model with categorical outcomes, where binary indicators are most commonly 

used in practice. 

 The statistical expression of the LCA model describes the key parameters in the model. 

Suppose there are M binary latent class indicators, u1, u2,…, uM observed on n individuals. The 

LCA model assumes that the M indicators are all reflective measures of an underlying unordered 

categorical latent class variable, c, that has K latent classes. There are two parameters of interest 

in an LCA model without covariates (e.g., an unconditional LCA): the relative size of the latent 
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classes and the conditional item probabilities. First, the relative size of each class, or the 

proportion of individuals in a given latent class k, P(c = k), is denoted by k . This parameter 

describes the relative size of each of the emergent latent classes. The LCA model implies that the 

K classes are mutually exclusive and exhaustive, meaning that each individual in the population 

has membership in exactly one of the K latent classes and 1k  .      

 Similar to the typical default model specification in traditional factor analysis (e.g., one 

without any correlated disturbances), the LCA model assumes local independence for the set of 

M indicators conditional on class membership, thus often termed the conditional independence 

assumption. This assumption implies that latent class membership explains all of the shared 

variance among the observed indicators. Stated differently, any association among the observed 

indicators is assumed to be entirely explained by the latent class variable, and once the latent 

class variable is modeled the indicators are no longer associated. The joint distribution of all the 

indicators and the latent class variable, c, under the conditional independence model is expressed 

as 

     1 2

1 1

Pr( , , , ) Pr( | ) .
MK

i i Mi k mi i

k m

u u u u c k
 

  
    

  
                        (1) 

Because we generally use binary indicators in LCA, the model estimates a logit to capture the 

association between the observed indicator and the latent class variable. This variable is akin to a 

factor loading in factor analysis, but because the variable is categorical, a logistic regression is 

used in LCA instead of standard regression. A logit value for each item is estimated for each 

latent class. The class-specific indicator probabilities, or conditional item probabilities, are 

parameterized as single thresholds on the inverse logit scale as follows 
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whereas the class proportions are parameterized as intercepts on the inverse multinomial scale 

such that 

 
 

 

0

0

1

exp
Pr ,

exp

k

k ik K

j

j

c k







  


            (3) 

with 0 0K   for identification.  

The second key parameter in the LCA model, then, is the set of conditional item 

probability parameters, mk . These parameters describe the relations between the observed 

indicators and the latent categorical variable (similar to factor loadings in factor analysis). These 

conditional item probabilities can be considered the measurement parameters in the 

unconditional LCA model, whereas the structural parameters are the relative class size 

parameters, 0k , and describe the relative sizes of the emergent latent classes. Although it is 

possible to partially relax the conditional independence assumption, as sometimes done in factor 

analysis models by estimating correlated disturbance terms, researchers should rely on a priori 

substantive knowledge and proceed with caution as to consider the sample-specific (and 

potentially idiosyncratic) nature of observed covariation that are ostensibly expressed as 

violations of this assumption. Other types of mixture models—namely growth mixture models 

(B. O. Muthén & Shedden, 1999; Petras & Masyn, 2010; Ram & Grimm, 2009) and factor 

mixture models (Clark et al., 2013; Lubke & Muthén, 2005)—are somewhat better suited for 

relaxing the conditional independence assumption, but they are not without potential problems in 

terms of the formation and interpretation of the emergent classes in the modeling process.  

2. How do you decide on the number of classes? 
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 The decision of how many classes to retain in an LCA is a critical—yet often arduous—

modeling step in LCA. This process is often called class enumeration and is similar to deciding 

on the number of factors to retain in an exploratory factor analysis. Class enumeration includes 

fitting several LCA models with differing numbers of latent classes, collecting and tabulating fit 

information for each fitted model, and studying patterns to decide on how many classes best 

describe the patterns observed in the data. As in conventional structural equation modeling 

(SEM), there is not a single fit index that is agreed upon for use in enumerating classes, but 

rather, we use a set of fit indices to decide. In addition, because fit indices often do not all point 

to a single solution, the recommended procedure for exploring and deciding on the number of 

classes is to jointly consider statistical fit indices, substantive interpretability and utility, and 

classification diagnostics, which help to illuminate how well the classes are classifying and 

differentiating among the individuals considered (Masyn, 2013; B. O. Muthén, 2003).  

It is recommended that we begin the modeling process by estimating a 1-class LCA 

model, which is a model that is simply estimating the observed indicator endorsement probability 

for the item set (the observed item proportions in the sample statistics). This 1-class model serves 

as a comparative baseline for models with more than one class. Then, we increase the number (k) 

of classes by one, examining whether the addition of each class results in conceptually and 

statistically superior solutions. We usually stop estimating additional classes when empirical 

under-identification (e.g., overparameterization) or convergence issues are encountered (which is 

generally indicated by error messages from the software being used). Once all the LCA models 

are fitted, we collect fit information from each one (e.g., copy/paste the information) and 

summarize them in a single table for ease of evaluation.   

Fit Indices used in LCA 
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 This section describes guidelines for fit indices that are currently supported for use in 

deciding on the number of classes in LCA models (Masyn, 2013; Morgan, 2015; Morovati, 

2014; Nylund, Asparouhov, & Muthén, 2007; Yang, 2006). These fit indices have been 

examined in simulation studies and have been shown to generally work well in identifying the 

correct number of classes in an LCA. In any given data analysis setting, however, we do not 

know the “true” correct number of classes, so it is hoped that these fit indices can help us to 

approximate to the correct number of classes, assuming that latent classes truly “exist” in a given 

population. Table 1 provides a summary of the commonly used fit indices, references, guidelines 

for use, and how to obtain the values.  

 First are information criteria (IC)—including the Bayesian Information Criterion (BIC), 

Sample-size adjusted Bayesian Information Criterion (SABIC), Consistent Akaike Information 

Criterion (CAIC), and Approximate Weight of Evidence Criterion (AWE)—which are 

approximate fit indices where lower values indicate superior fit. For example, in a data analysis 

setting we would compare the values of the BIC across the set of fitted models and would pick 

the model that has the lowest value of the BIC. That is, the model preferred by the BIC is the 

model with the lowest value among the set being considered. It can be useful to plot the values of 

the BIC, ABIC, CAIC, and AWE to visually display the values and provide for easy inspection 

(see, for example, Figure 2). In practice, it is not uncommon that the BIC continues to decrease 

for each additional class added (e.g., there is not a global minimum) and in these instances these 

plots can be particularly useful to inspect for an “elbow” of point of “diminishing returns” in 

model fit (e.g., small decreases in the IC for each additional latent class), akin to how one 

interprets a scree plot in exploratory factor analysis.   
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 Second are the likelihood-based tests—the Vuong-Lo-Mendell-Rubin adjusted likelihood 

ratio test (VLMR-LRT) and the bootstrapped likelihood ratio test (BLRT)—which provide p-

values assessing whether adding a class leads to a statistically significant improvement in model 

fit. These likelihood-based tests compare the fit between two neighboring class models (e.g., a 2-

class versus a 3-class model). A non-significant p-value for a k class solution thus lends support 

for the k - 1 class solution. See Nylund, Asparouhov, and colleagues (2007) for more details on 

ICs and likelihood-based tests and their utility in enumerating classes in the LCA context.   

Third, are two indices commonly used in the Bayesian modeling context that can be used 

to compare LCA models. The Bayes Factor (BF) is used as a pairwise comparison of fit between 

two neighboring class models. The BF, which is generally not directly provided by statistical 

software program and thus require calculation by the user (see Table 1), represents the ratio of 

the probability that each model being compared is true. More specifically, 1 < BF < 3 suggests 

“weak” support for the model with less classes, 3 < BF < 10 suggests “moderate” support, and 

BF > 10 suggests “strong” support (Wagenmakers, 2007; Wasserman, 1997). Finally, correct 

model probability (cmP) provides an estimate of each model being “correct” out of all models 

considered, assuming that the “true” model is indeed among them; the model with the largest 

value is selected. See Masyn (2013) for more details on the BF and cmP, as well as other 

considerations on fit indices. 

As alluded to previously, it is not uncommon that the collection of fit information 

described here do not converge on one single model. It is more common that the fit indices 

support one or two candidate models. In this case, we recommend that fit for these candidate 

model be presented and that the solutions be studied closely (Masyn, 2013; B. O. Muthén, 2003; 

Ram & Grimm, 2009). Researchers should consider how the selected models relate to each other 
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(e.g., is one an expanded version of the other?) and the stability of the different models, 

including the relative sizes of the emergent classes (e.g., are the emergent classes relatively 

large—say, having more than 5-8% of the sample and a decent number of individuals in the 

class?). It has been shown through simulation studies of a variety of different types of mixture 

models (Depaoli, 2013; Morgan, 2015; Morovati, 2014; Tofighi & Enders, 2008; Tueller & 

Lubke, 2010) that small or “rare” classes are generally difficult to recover at small sample sizes 

and when class prevalences are highly unequal (e.g., the classes are not the same size). As such, 

we encourage researchers to be mindful as to avoid selecting an overextracted and potentially 

unstable class solution, especially when lacking a large enough sample size that may otherwise 

support the reliable detection of classes with low prevalences. Additionally, when the available 

ICs, like the BIC, fail to reach a minimum, some have suggested that this may be an indication 

that the particular mixture model may not be correctly specified and that other models may be 

more appropriate. This may be another type of mixture model (e.g., factor mixture model), one 

with correlated disturbances (Asparouhov & Muthén, 2015), or perhaps not a mixture model at 

all, although more research is needed in this area. Taking together these considerations, as well 

as results of auxiliary variable analysis, a final model can be selected. 

Applied Example: Positive Youth Development Inventory (PYDI) Analysis 

 We illustrate the modeling ideas described in this article using 7 items (Table 2) from the 

PYDI Contribution subscale (Arnold, Nott, & Meinhold, 2012) that were administered to 1629 

college and university students. The PYDI measures behavioral, psychological, and social 

characteristics that are theorized to indicate positive youth development, and the Contribution 

Subscale specifically measures the degree to which youth express values and behaviors 

associated with channeling their positive psychosocial strengths to contribute meaningfully to 
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their local community (Lerner et al., 2005). Our research question was to examine whether this 

construct of positive contribution was comprised of qualitatively distinct subtypes among college 

and university students, and to further examine whether such subtypes (if indeed were present) 

were meaningfully associated with a demographic predictor and a wellbeing-related outcome. 

 We first dichotomized the items at the midpoint of the original 4-point Likert metric (1 = 

strongly disagree to 4 = strongly agree), where higher scores indicated more positive 

development. Using the dichotomized PYDI Contribution Subscale items, we fitted a series of 

LCA models beginning with a 1-class model up until a 6-class model and collected their fit 

information as reported in Table 3. Fit indices did not converge on a single solution, and this is 

generally the rule rather than the exception in applied practice. The ICs and the cmP suggested a 

3-class solution, whereas the likelihood tests supported a 4-class solution. Evaluating Figure 2, 

the most prominent “elbow” was at the 2-class model, whereas the lowest point for the ICs was 

at the 3-class model. The BF suggested that the 3-, 4-, and 5-class solutions were plausible. 

Given that the BLRT specifically has been shown to be robust across a diversity of modeling 

conditions (Nylund, Asparouhov, et al., 2007), we tentatively selected the 4-class solution.  

3. How do you interpret the item probability plot? 

Although LCA is an exploratory technique, substantive theory and model utility 

(including the parsimony principle) should contextualize the interpretation of fit indices and the 

selection of the final model (Masyn, 2013), as with all latent variable models. Indeed, Morgan 

(2015) advises that model selection will be facilitated to the extent that researchers can anticipate 

the prevalence of theoretically expected classes and their degree of differentiation. As 

incongruent information among fit indices is common, it is crucial to gauge the conceptual 

meaningfulness and plausibility of each class solution when interpreting and labeling the classes 



LATENT CLASS ANALYSIS FREQUENTLY ASKED QUESTIONS 
 

13 

(B. O. Muthén, 2003). One approach for doing so is to visually inspect the item probability plot 

and to examine the qualitative differences among the classes.  

After a solution is selected and interpreted, there are several guidelines for evaluating 

how well the classes are differentiated (Masyn, 2013). First, entropy is an omnibus index where 

values > .80 indicate “good” classification of individual cases into classes (Clark & Muthén, 

2009). Second, average posterior probabilities (AvePP) provide information about how well a 

given model classifies individuals into their most likely class. Individuals’ AvePP values are 

reported for their most likely class assigned, where values > .70 indicate well-separated classes 

(Nagin, 2005). Third, class homogeneity reflects how similar people are to each other with 

respect to their item responses in each class, where conditional item probabilities > .70 and < .30 

indicate high homogeneity. It can be useful to visually evaluate class homogeneity using the item 

probability plot. Fourth, class separation is how dissimilar people are across classes in their item 

responses, where odds ratios of item probabilities between two classes > 5 and < .20 indicate 

high separation. Notably, items may differentiate some classes well but not others. Researchers 

should thus consider holistically how well each item contributes to class separation for the 

overall model. 

PYDI Analysis 

Figure 3 illustrates the conditional item probabilities for the selected 4-class solution, 

where “conditional” again refers to the likelihood of endorsing each item as a function of class 

membership (e.g., the probabilities are “conditioned” on class). The model indicators are labeled 

on the x-axis whereas the y-axis presents the metric of the item probabilities (0 to 1). The four 

classes are defined by the crisscrossing lines, and their preliminary labels are listed at the bottom 

of Figure 3 with class prevalence (e.g., relative class sizes) in parentheses. We referred to the 
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indicators in Table 2 in evaluating the substantive meaning of the joint patterns of item responses 

that emerged within each class. The first and largest class is characterized by high response 

probabilities for all indicators and were thus labeled the Holistic-Collaborative class. Youth in 

this class are likely to value social contribution overall and pursue pertinent activities in 

cooperation with others. The second class was labeled Altruistic-Low Self-efficacy and is likely 

to be comprised of youth who highly value social contribution yet do not believe in their own 

effectiveness for impactful engagement with their community. The third class was labeled Low 

Engagement given the characteristically low or ambivalent response probabilities for all model 

indicators. The fourth class was labeled Holistic-Independent given their similarity to the 

Holistic-Collaborative class apart from two indicators measuring interpersonal and community 

engagement. Youth in this class are likely to value social contribution but may prefer pursuing 

relevant activities in a more independent or introverted manner. Examining Figure 3, it is 

apparent that these two classes are quite homogenous (and thus not well-separated) in their item 

responses except on items 1 and 3, which may diminish the model classification statistics.  

As seen in Table 3, our entropy value approached but did not meet the recommended 

cutoff, suggesting non-ignorable overlap among the classes. Examining Table 4, it further 

appears that this lack of differentiation is localized to the Holistic-Independent class for which 

AvePP is only slightly better than chance. More specifically, youth who were modally assigned 

to the Holistic-Independent class also had an approximately 44% chance of belonging in the 

Holistic-Collaborative class, which is unsurprising given their similar conditional item 

probability patterns. Nevertheless, the AvePP were high for the remaining classes. Finally, we 

evaluated class homogeneity and separation considering the statistical heuristics described above 

and the item probability plot. As examples, it appears that items 5, 6, and 7 (see Table 2 and 
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Figure 3) demonstrate high class homogeneity where youth are either highly likely or very 

unlikely to endorse this subset of items. In terms of separation, item 7 clearly distinguishes the 

Low Engagement class from the other three classes, but not among those three remaining classes.  

4. How do you include covariates and distal outcomes into an LCA model? 

 It is often of substantive interest to identify and examine the antecedents and 

consequences of latent class membership. Covariates and distal outcomes, often called auxiliary 

variables, provide a context for understanding more about the emergent latent classes and the 

people who comprise them. The estimation of the relations among the auxiliary variables and the 

latent class variable is a very active area of methodological research, where new methods and 

approaches are being developed. Whereas an intensive discussion is beyond the scope of this 

article, broadly speaking, covariates can be used to explore whether class prevalence is 

equivalent across levels of a predictor of class membership (e.g., treatment vs. no treatment). 

Distal outcomes can be used to examine whether the latent classes display statistically significant 

mean-level differences in the selected distal outcome variables (e.g., mental health). 

 The relations between latent class membership and a covariate is expressed as a 

multinomial logistic regression model, given by 

 
0 1

0 1

1

exp( )
Pr( | ) ,

exp( )

k k i
i i K

j j i

j

x
c k x

x

 

 



 


 (4) 

where parameters of the last class are set to zero for identification, specifically 0 1 0K K   , and 

the indicators are independent of the covariate conditional on class membership such that the 

joint distribution of the u’s is expressed as 
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 For distal outcomes, effects across classes are examined by estimating class-specific 

mean and variance estimates for each distal outcome and then conducting pairwise comparisons 

to determine where among the classes the distal outcomes are significantly different. Examples 

of how to estimate these relations in Mplus are presented in Appendices 1 and 2. 

Ideally, the joint estimation of the latent class measurement model and the association 

among the latent class variable and auxiliary variables would be conducted in a 1-step method as 

commonly done in a general SEM context. In mixture modeling, however, this is not as 

straightforward because including an auxiliary variable can and may unintentionally influence 

the formation of the latent class variable, both in relative class size and type (Asparouhov & 

Muthén, 2014; Nylund-Gibson, Grimm, Quirk, & Furlong, 2014; Vermunt, 2010). Specifically, 

the joint estimation of the measurement model and auxiliary relations can lead to vastly different 

latent class solutions, which has led to the recent research activity around three-step methods 

which circumvent these issues. Recent simulation studies have recommended that we enumerate 

classes prior to estimating auxiliary variable relations (Nylund-Gibson & Masyn, 2016). 

Over the last 12 years, at least 7 different approaches on how to include auxiliary 

analyses have been proposed as a way of dealing with these issues where, generally, the latent 

classes are estimated independently from the association among the latent class variable and 

auxiliary variables (Grimm, Nylund-Gibson, & Masyn, 2018). Without discussing each method 

extensively, we focus on the current best practice, which is to use either the three-step (Vermunt, 

2010) or Bolck, Croons, & Hagenaars (BCH) method (Asparouhov & Muthén, 2014; Bolck, 

Croon, & Hagenaars, 2004; Vermunt, 2010). More specifically, the current recommendation is to 

separate the class enumeration step from any subsequent structural analyses, wherein classes are 

enumerated solely with the chosen latent class indicators measuring the substantive domain of 
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interest (Nylund-Gibson & Masyn, 2016). Once a final class solution is determined, the 3-step or 

the BCH method can be used to estimate covariate and/or distal outcome relations. In these 

approaches the measurement parameters of the latent classes are held fixed while accounting for 

classification error, and then auxiliary variables are subsequently included and their relation to 

the latent class variable is estimated. Nylund-Gibson, Grimm, Quirk, and Furlong (2014) present 

a detailed discussion about using the three-step method. For more guidance on the BCH method 

as implemented in Mplus, see Asparouhov and Muthén (2014). Both articles include Mplus 

syntax for using these methods with LCA and advanced mixture models. 

PYDI Analysis 

We demonstrate the use of the manual 3-step method by examining a binary covariate of 

race (e.g., Hispanic vs. non-Hispanic) and a continuous distal outcome of life satisfaction as they 

relate to the PYDI Contribution Subscale latent classes (see Figure 4). It should be noted that we 

included the direct relation between life satisfaction and race to control for the direct association 

among these variables; this path was statistically non-significant. See the Appendices 1 and 2 for 

Mplus syntax for the specification of the model in Figure 4.  

Following the three-step procedure, the logit values of the classification probabilities for 

the 4-class solution for the first step were copied to be used in the third step. We used these 

values in a second set of analyses to fix the measurement parameters of the latent classes, and the 

auxiliary variables relations were estimated thereafter (see Appendix 2). We used multinomial 

logistic regression to evaluate whether the relative proportions of Hispanic and non-Hispanic 

youth were equal across the four classes, and the results are reported in Table 5. Notably, 

Hispanic youth (vs. non-Hispanic) were more likely to be in the Holistic-Collaborative class 

compared to both the Altruistic-Low Self-efficacy class (OR = 2.71, p = .001) and the Holistic-
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Independent class (OR = 1.62, p = .009). No other covariate-class relations were statistically 

significant. Simultaneously, we estimated class-specific means of life satisfaction for each of the 

four classes. For the interpretation of distal outcomes, we centered the covariate such that the 

distal outcome mean differences across the latent classes accounted for the relative proportion of 

Hispanic vs. non-Hispanic youth in the entire sample. Pairwise Wald tests revealed that life 

satisfaction in the Holistic-Collaborative class was significantly higher compared to each of the 

other three classes. No other distal mean comparisons were statistically significant.  

5. What is the required sample size for LCA? 

 A common question with any latent variable technique is about the required sample size. 

As in all SEM, there is not one fixed minimum sample size in LCA as this depends strongly on 

multiple study conditions that vary in practice, including the number of indicators included in the 

model, how well the indicators differentiate classes, how well-separated the classes are, and the 

relative sizes of the classes, among other aspects. To date, there are no concrete guidelines for 

sample size for LCA models, although a heuristic of N ≥ 500 has been suggested based on two 

simulation studies (Finch & Bronk, 2011). More generally, however, simulation study results 

have been mixed and many LCA applications have a much smaller sample size.  

Drawing from previous methodological research, it appears that N ≈ 300-1000 is roughly 

the range in which most commonly used fit indices for mixture models can be expected to 

function adequately (Morgan, 2015; Morovati, 2014; Nylund, Asparouhov, et al., 2007; Tein, 

Coxe, & Cham, 2013; Tofighi & Enders, 2008; Yang, 2006). For simple LCA models with a pair 

of well-separated classes, a sample size as small as 30 may be sufficient. For larger and more 

commonly encountered LCA models with many indicators and many classes, larger samples 

should be used to ensure that there is sufficient power to estimate all model parameters and 
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recover the true number of classes (Lubke & Luningham, 2017). Inadequate sample size can lead 

to convergence issues, insufficient power to detect classes, and improper and unstable solutions. 

Further, small samples may mask small, yet substantively relevant classes that are hard to detect 

because of their low prevalence (Masyn, 2013). Although simulation studies can be used to help 

decide on the necessary sample size for a given model, they require that the “true” model be 

specified, which is often unknown given the exploratory nature of LCA (see L. K. Muthén & 

Muthén, 2002). For an example of how to set up simulation study in Mplus using an LCA model, 

see example 12.4 in the Mplus user’s guide (L. K. Muthén & Muthén, 1998-2017).  

When deciding on sample size, researchers should consider both the prevalence for any 

given class and the coverage for the class-specific parameters that are being estimated (Lubke & 

Luningham, 2017). Researchers often have a substantive interest in rare classes but, as 

aforementioned, these cannot be detected without a sufficient overall sample size to estimate 

classes with low relative prevalences (say, 1-8%), especially if a large number of indicators have 

been included and many class-specific parameters are freely estimated (Masyn, 2013). For 

multiple types of mixture models, simulation studies have shown that beyond sample size per se, 

the likelihood of accurately recovering the correct number of mixture classes depends heavily on 

class separation (Depaoli, 2013; Lubke & Muthén, 2007; Lubke & Neale, 2006; Tein et al., 

2013; Tofighi & Enders, 2008; Tueller & Lubke, 2010). Adding well-separating items to an LCA 

has been shown to improve correct latent class recovery and to help mitigate the destabilizing 

effects of small sample size (Wurpts & Geiser, 2014). However, the nature and number of 

classes are often difficult to anticipate in applied modeling scenarios, including the selection of 

items that can effectively identify the subgroups that are hypothesized to exist in the population. 
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As in other statistical approaches, item choice in an LCA should be motivated by well-

defined research questions. It has been suggested that researchers select items that as a set covers 

the full range of the construct theorized to drive classification among individual cases in a 

population (Lubke & Luningham, 2017). If we have “good” items that separate classes well, then 

we do not need as many items (Collins & Wugalter, 1992). Again, however, we rarely have a 

priori knowledge of which items will differentiate classes well. Although there are ways to 

identify items that have poor measurement qualities (for a discussion on class homogeneity and 

separation, see Masyn, 2013), these approaches are based on a specified model and may not 

generalize outside the parameters of that model. As such, the problem of item selection in LCA 

should be approached substantively where choices are thoughtfully grounded in theory and prior 

research to the extent possible. 

6. Which statistical analysis software can you use to estimate LCA models? 

 There are several statistical software packages that can be used to fit LCA models. Some 

of the more common software packages include Mplus (L. K. Muthén & Muthén, 1998-2017), 

Latent Gold (Vermunt & Magidson, 2013), MplusAutomation in R (Hallquist & Wiley, 2018), 

LAVAAN package in R (Rosseel, 2012), GLLAMM for Stata (Rabe-Hesketh, Skrondal, & 

Pickles, 2004), and PROC LCA in SAS (Lanza, Collins, Lemmon, & Schafer, 2007), among 

others. Each software package has different strengths. Whereas some are lower in cost or free 

(e.g., MplusAutomation and LAVAAN), they may not provide as much direct user support 

services or may require that users are proficient in a specific coding language. Some are very 

flexible yet may not have an intuitive programing language. Latent Gold provides an array of 

graphic outputs and an intuitive language. Mplus also has an intuitive language and allows 

researchers to specify the latent class variable in a larger latent variable framework (e.g., in the 
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context of a mediation model, see for example McLarnon & O’Neill, 2018) and offers an active 

online support website and one-on-one customer support. For SAS or Stata users, PROC LCA 

and GLLAAMM may be the preferred computing environments. MplusAutomation in R 

(Hallquist & Wiley, 2018) provides useful ways to compile many syntax files, tabulate results, 

and create useful plots for interpreting results, and user support can be found online and through 

the package documentation. For simple LCA models, there will not be major differences across 

software packages; this choice is more relevant when researchers are estimating more complex 

mixture models, using different estimation techniques, or seeking specific graphical output. 

7. Which estimation technique is commonly used? What are random starts?  

In most software packages used to estimate mixture models, the LCA model parameters 

are estimated by maximum likelihood (ML) using the expectation-maximization (EM) 

procedure. ML estimates have many features that make them desirable and thus are the preferred 

estimation method. Related to the point estimates is the issue of confidence in a solution. For ML 

estimation, item-level missingness is easily accommodated and assumed missing at random 

(MAR). That is, individual cases are not excluded from the analysis unless they are missing data 

on all the observed items.  

For mixture models, there is a known sensitivity of the likelihood function to converge on 

a local, instead of a global, solution (McLachlan & Peel, 2000). To circumvent this problem, the 

suggestion is to use a set of random start values, estimate the model many times, and see if 

across the set of random start values, there is convergence on a similar solution (Berlin, 

Williams, & Parra, 2014; Masyn, 2013). This process is automated in some software packages. 

In Mplus, for example, researchers can specify how many random starts to consider. 
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Bayesian estimation methods are gaining popularity in the social sciences (Kaplan, 2014) 

and can be used as an alternative to ML to estimate LCA models. This estimation technique is 

easily implemented in Mplus (as well as other software packages) and can be useful when 

modeling assumption are not met (e.g., conditional independence). For example, by using non-

informative priors, researchers can specify small within-class item correlations that better 

approximate the within-class dependency without significantly reshaping the emergent classes 

(Asparouhov & Muthén, 2011). In other mixture modeling contexts, simulation studies have 

shown that if accurate and informative priors are available, including them in the model 

estimation process can reduce parameter bias and enhance mixture class recovery (Depaoli, 

2012, 2013; Depaoli, Yang, & Felt, 2017). See Li, Lord-Bessen, Shiyko, and Loeb (2018) for an 

introductory tutorial on how to conduct Bayesian LCA, which also has an applied example that 

illustrates the method. In addition, van de Schoot and colleagues (2014) provide a tutorial on 

how to specify some basic Bayesian models and describe some of the modeling options. Also, 

they help guide the reader in how to interpret modeling results, since these are interpreted quite 

differently in the Bayesian context (e.g., they do not report p-values, among many other things).  

PYDI Analysis 

In our PYDI example, we estimated the set of LCA models in Mplus 8.0 (L. K. Muthén 

& Muthén, 1998-2017) using full information maximum likelihood (FIML) with robust standard 

errors. We used a large number of random starts (over 500 initial random starts) to establish 

global maxima and avoid local solutions (McLachlan & Peel, 2000). Examination of the random 

start output indicated that the log-likelihood value was replicated 82 times out of the 500 

requested, which is more than sufficient (e.g., some recommend that 3-10% is needed) to have 

confidence that the solution we selected was a global, and not local, solution.  
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8. How is LCA different from latent profile analysis? 

 LCA is conceptually akin to latent profile analysis (LPA) as both approaches aim to 

estimate an underlying categorical latent variable. Although the modeling process for both LCA 

and LPA share similarities, there are some important differences as well (Masyn, 2013). LPA 

uses observed indicators that are continuous in nature, whereas in LCA, the indicators are 

categorical and most often binary. As a result, instead of estimating conditional item 

probabilities across classes, LPA estimates conditional means and variances of the continuous 

indicators. In LPA, the conditional independence assumption implies that the indicators are 

uncorrelated given latent profile membership, although this assumption can be relaxed and items 

may be allowed to freely correlate within profiles. The variance terms in LPA—both the within 

class variance and covariance of the observed items—add a layer of complexity because they can 

influence the nature of the heterogeneity being modeled. In fact, freely estimated variances and 

covariances (either class-varying or invariant) become a modeled source of heterogeneity that 

contributes to the formation of the classes. There have been controversial discussions in the 

literature about the sensitivity of the within-class variance assumptions and class separation 

(Bauer & Curran, 2003; B. O. Muthén, 2003), where its implications for the class enumeration 

process in growth mixture models (Tofighi & Enders, 2008) and LPA models (Peugh & Fan, 

2013) have been subject to investigation. Although there are recommendations for which models 

to consider, the consequences of misspecifying the within-class variance and covariance 

structure in LPA and growth mixture models are not well understood and are an active area of 

research.  

9. What is the difference between LCA and factor analysis? 
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 One intuitive way to compare LCA with factor analysis is by understanding that the 

former groups similar individuals (people, clinics, schools, etc.) whereas the latter groups similar 

items. More technically, factor analysis defines groups of variables that are similar to each other 

by estimating a latent factor that represents the shared covariation among the chosen set of 

indicators (e.g., communality) and is thus termed the “common factor” model. Rather than 

homogeneity, LCA groups people based on heterogeneity where individuals are differentiated 

according to systematically diverging patterns of responses to a set of observed indicators. 

Whereas there are clear differences in these models, hybrid models can be specified that include 

both a factor and a latent class model, such as in a factor mixture model (Lubke & Muthén, 

2005). These models can accommodate “level” differences (e.g., severity) in the factor while 

estimating “shape” differences, which involve heterogeneity (e.g., typology) in the item 

responses.  

10. Can you use LCA with longitudinal data? 

LCA typically uses cross-sectional data in which responses to multiple items (or 

measures) are collected at a single time point. However, there is no statistical necessity dictating 

the use of cross-sectional data. Longitudinal LCA (LLCA), sometimes called repeated measures 

LCA (RM-LCA; Collins & Lanza, 2010), can be used with longitudinal measures (much like 

growth modeling) where a latent class variable is specified to capture heterogeneity in the 

repeated measures over time. In these applications, the latent class variable can be used to 

describe change over time without having to make any assumptions about the structure or 

functional form of the change process whereas other longitudinal models do so, such as growth 

models. LLCA models can thus be specified before a growth model or growth mixture model as 

a baseline model to explore heterogeneity in change. An example of an applied LLCA model of 
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change in alcohol use across racial groups revealed heterogeneous patterns of alcohol use over 

time, both within (e.g., different classes) and across race (Chung, Pedersen, Kim, Hipwell, & 

Stepp, 2014). 

Conclusion 

 In this article, we described LCA and its versatility as an analytic approach to 

parameterizing unobserved within-group differences in a population with respect to a substantive 

domain of interest. LCA is increasingly popular among psychological researchers because 

they—having inherited a historical and professional tradition of seeking to better understand 

individual and within-group differences—regularly encounter research scenarios that call for 

identifying how people are systematically different in ways we cannot directly observe. By 

answering 10 frequently asked questions about LCA, we presented a pedagogical, introductory 

overview of common topics related to this approach, illustrated core modeling ideas with an 

applied example using the PYDI, and facilitated access to references that provide a more in-

depth treatment of the issues discussed. In addition, we provided basic Mplus code as an 

introduction to the syntax of a simple LCA model. An informed and judicious application of 

LCA can offer psychological researchers the potential to attain a more nuanced and refined 

knowledge of psychosocial phenomena and, by extension, to inform interventions and policy that 

are more sensitive and responsive to the complex variation inherent those phenomena.  

 The LCA model provides a foundation for appreciating and understanding the wide-

ranging possibilities afforded by the mixture modeling framework. There is a vast array of 

modeling extensions from the LCA model that allow researchers to identify heterogeneity in 

complex and dynamic psychological phenomena, and we briefly mention a select few here. 

Although LCA is generally used as an exploratory technique, it can be applied in a confirmatory 
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manner, for instance to test for the equivalence of latent class solutions across known groupings 

akin to measurement invariance in factor analysis (Finch & Bronk, 2011; Laudy et al., 2005; 

Morin, Meyer, Creusier, & Biétry, 2016). Also, it may be of interest to model individuals’ joint 

membership across multiple latent class variables and for these scenarios using a joint LCA or 

latent “co-occurrence” model can be appropriate (Jeon, Lee, Anthony, & Chung, 2017). For 

nested data (or data that violate the assumption of independent observations), multilevel LCA 

can be used where the probability of class membership is allowed to vary across units of 

nestedness, for example classrooms (Nylund-Gibson, Graham, & Juvonen, 2010) or communities 

(Henry & Muthén, 2010). Latent transition analysis (LTA) is used to examine how individuals 

transition in their class membership over time with respect to a latent class variable measured 

across multiple time points (Collins & Wugalter, 1992; Nylund, 2007). Growth mixture models 

(GMM), as alluded to previously, are used to model the heterogeneity in growth trajectories 

(e.g., often termed latent trajectory classes) over time (Petras & Masyn, 2010; Ram & Grimm, 

2009). In addition, latent class variables can be embedded into larger latent variable models, such 

as a mediation model (McLarnon & O’Neill, 2018). All of these advanced mixture models in 

essence have at their foundation a latent class variable.  

 In addition to the wide range of mixture modeling applications, there are continuing 

advances in our knowledge of how to specify these models, including the specification of 

auxiliary variables (e.g., covariates and distal outcomes). In this article, we demonstrated the 

three-step method, but more novel approaches that preserve the latent class measurement model 

and allow for efficient and unbiased estimation of auxiliary relations are currently being 

developed and tested. For example, recent work on differential item functioning (DIF) in the 

LCA context (e.g., the direct association of a covariate and a latent class indicator) has presented 



LATENT CLASS ANALYSIS FREQUENTLY ASKED QUESTIONS 
 

27 

modeling strategies for permitting DIF and including it in subsequent three-step specifications 

(Masyn, 2017). Thus, we encourage researchers to keep abreast of the exciting changes and 

developments in best practices that are expected in the coming years.  

 LCA and its extensions are likely to expand in their central place in the larger landscape 

of statistical methods for psychological research in the near future. Methodological work is well 

underway and continues to improve our understanding of how mixture models perform in 

practice and their plausibility in applied contexts. We hope that this article has illustrated the 

flexibility of the mixture modeling framework, demonstrated the ability of this class of models to 

help answer questions about unobserved heterogeneity in diverse phenomena, and highlighted 

the substantial utility that LCA can bring to psychological research.  
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Table 1 

      

Guidelines for Commonly Used Fit Indices for Latent Class Analysis 
      

Fit Index Reference Guideline Computation Where it is Obtained 

Information Criterion 

Bayesian Information 

Criterion (BIC)1 

Schwarz 

(1978) 

 Select the model with the lowest BIC value. 

Or, pick the model where there is a 

diminishing decrement in value for each added 

class (e.g., like a scree plot). 

𝐵𝐼𝐶 =  −2(𝐿𝐿) + 𝑑𝑙𝑜𝑔(𝑛) 
Provided by Mplus in 

output 

Sample-size Adjusted 

Bayesian Information 

Criterion (SABIC) 

Sclove (1987)  Same guideline as BIC 𝑆𝐴𝐵𝐼𝐶 =  −2(𝐿𝐿) + 𝑑𝑙𝑜𝑔(𝑛 + 2 24⁄ ) 
Provided by Mplus in 

output 

Consistent Akaike 

Information Criterion 

(CAIC) 

Bozdogan 

(1987) 
 Same guideline as BIC 𝐶𝐴𝐼𝐶 =  −2(𝐿𝐿) + 𝑑[𝑙𝑜𝑔(𝑛) + 1] 

Computed by researcher 

using LL value, number of 

parameters (d), and 

sample size, all found in 

the output. 

Approximate Weight 

of Evidence (AWE) 

Banfield & 

Raftery 

(1993) 
 Same guideline as BIC 𝐴𝑊𝐸 =  −2(𝐿𝐿) + 𝑑[𝑙𝑜𝑔(𝑛) + 1.5] 

Computed by researcher 

using LL value, number of 

parameters (d), and 

sample size, all found in 

the output. 

Relative Fit Indices 

Vuong-Lo-Mendell-

Rubin Likelihood 

Ratio Test (VLMR-

LRT) 

Lo, Mendell, 

& Rubin 

(2001) 

 Compares a specified K-class model to K-1 

class model and provides a p-value indicating 

if the additional class (K-class model) 

significantly improves model fit compared to 

the k-1 class model. 

 If p-value for a K class model is non-

significant, that indicates that the K-1 class 

model is supported by the VLMR-LRT.  (e.g., a 

non-significant p-value for a 5-class model 

suggests the 4-class model is supported by the 

VLMR-LRT)  

 
Computed by Mplus by 

requesting Tech11 

Bootstrap Likelihood 

Ratio Test (BLRT) 

McLachlan & 

Peel (2000) 
 Same guideline as VLMR-LRT  

Computed by Mplus by 

requesting Tech14; user 

may need to specify more 

random starts for BLRT 
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by specifying K-

1STARTS (see 

Asparouhov & Muthén, 

2012 for more). 

Bayes Factor (BF)  

Wagenmakers 

(2007); 

Wasserman 

(1997) 

 Compares fit between two models: K and K+1.  

 A BF less than 3 is considered weak evidence 

for Model K over Model K+1, 3 < BF <10 is 

moderate evidence for Model K, and BF > 10 

is strong evidence for Model K. 

The BF comparing Model A (model K) 

and Model B (model K+1) is 𝐵𝐹A,B =
 exp [SICA − SICB] where SIC, the 

Schwartz Information Criterion, is 

defined as 

𝑆𝐼𝐶 =  −.05(𝐵𝐼𝐶); (e.g., BF of 5 

provides moderate evidence for a 3-class 

model compared to the 4-class model). 

Computed by researcher 

using BIC value provided 

by Mplus 

Approximate Correct 

Model Probability 

(cmP) 

Schwarz 

(1978) 

 Estimates the probability that each model out 

of a given set of fitted LCA models is correct, 

assuming the “true” model is in the set. The 

cmP values across the given set of models sum 

to 1. The model with the largest cmP value is 

the model that is picked. 

We calculate a cmP for each model in a 

set of J models specified by the user. We 

compute it as follows, 𝑐𝑚𝑃𝐴 =
 exp [𝑆𝐼𝐶𝐴−𝑆𝐼𝐶𝑚𝑎𝑥]

∑ exp [𝑆𝐼𝐶𝐴−𝑆𝐼𝐶𝑚𝑎𝑥]
𝐽
𝑗=1

  

where SICmax is the maximum SIC score 

of the J models that were considered in 

the given application.  

Computed by researcher 

using BIC value provided 

by Mplus 

 Note. 1The BIC is the most commonly used and trusted fit index for model comparison (Masyn, 2013; Nylund, Asparouhov, et al., 2007). LL = log likelihood; d = 

number of parameters; n = sample size.  
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 Table 2 

 

Indicator Labels: Positive Youth Development Inventory—Contribution 

Subscale Latent Class Analysis Model 

 

Item Description 

1:  I take an active role in my community. 

2:  I am someone who gives to benefit others. 

3:  I like to work with others to solve problems. 

4:  I have things I can offer to others. 

5:  I believe I can make a difference in the world. 

6:  I care about contributing to make the world a better place for everyone. 

7:  It is important for me to try and make a difference in the world. 
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Table 3 

 

Fit Statistics and Classification Coefficients: Positive Youth Development Inventory—Contribution Subscale Latent 

Class Analysis Models 

 

K LL BIC SABIC CAIC AWE BLRT p VLMR-LRT p Entropy BF cmP 

1 -3905.892 7863.555 7841.317 7841.267 7877.751 - - - .000 _.000 

2 -3439.483 6989.902 6942.250 6942.145 7020.324 <.001 <.001 .790 .000 _.000 

3 -3394.950 6960.001 6886.934 6886.774 7006.648 <.001 <.001 .718 >15.000 1.000 

4 -3379.436 6988.140 6889.658 6889.442 7051.011 <.001 _.002 .753 >15.000 _.000 

5 -3370.534 7029.501 6905.604 6905.333 7108.598 _.200 _.429 .782 >15.000 _.000 

6 -3364.745 7077.089 6927.778 6927.450 7172.411 _.500 _.472 .803 - _.000 
Note. K = number of classes; LL = log-likelihood; BIC = Bayesian Information Criterion; SABIC = Sample-size adjusted BIC; CAIC = 

Consistent Akaike Information Criterion; AWE = Approximate Weight of Evidence Criterion; BLRT = bootstrapped likelihood ratio test; 

VLMR-LRT = Vuong-Lo-Mendell-Rubin adjusted likelihood ratio test; p = p-value; BF = Bayes Factor; cmP = correct model probability. 

Bolded values indicate “best” fit for each respective statistic. Entropy is included in the table for brevity but should not be used as a model 

selection statistic (Masyn, 2013). 
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Table 4 

 

Classification Probabilities: Positive Youth Development 

Inventory—Contribution Subscale 4-class Model  

 

Class 1 2 3 4 

1: Holistic-Collaborative .969 .003 .000 .028 

2: Altruistic-Low Self-Efficacy  .069 .910 .021 .000 

3: Low Engagement  .007 .167 .752 .074 

4: Holistic-Independent .439 .000 .003 .558 
Note. Values indicate probabilities of most likely class membership (column) by 

latent class modal assignment (row). Bolded values indicate average posterior 

probabilities (AvePP). 
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Table 5 

  

Covariate Logits and Odds Ratios for Race (Hispanic): Positive Youth Development—Contribution Subscale 4-

class Model 

  

 Reference class 

Class membership 

1 2 3 4 

Logit OR Logit OR Logit OR Logit OR 

1: Holistic-Collaborative - - .998** 2.713 .589 1.802 .485* 1.624 

2: Altruistic Low Self-efficacy -.998** .369 - - -.408 _.665 -.513-_ _.599 

3: Low Engagement -.589__ .555 .408__ 1.504 - - -.104-_ _.901 

4: Holistic-Independent -.485*_ .616 .513__ 1.670 .104 1.110 - - 
Note. *p <.05. ** p ≤.001. 
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Figure 1. Number of Publications in Education and Psychology Journals between 2005 and 2016 that use Latent Class Analysis. 
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Figure 2. Plot of Information Criterion values: Positive Youth Development—Contribution Subscale Latent Class Analysis Models. 

Note. The ABIC and CAIC lines are overlapping. 
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Figure 3. Conditional Item Probability Plot: Positive Youth Development Inventory—Contribution Subscale 4-class Model. Note. See 

Table 2 for full indicator labels. Class prevalence are in parentheses. 
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Figure 4. Path Diagram of the Positive Youth Development—Contribution Subscale Latent Class Analysis Model with Covariate and 

Distal Outcome. Note. See Table 2 for indicator labels. Please note that the diagrammed relation between the latent class variable and 

the distal outcome represents class-specific conditional means rather than a bona fide regressive path. 
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Appendix 1:  Mplus Syntax for Step 1 – Unconditional LCA 

 

TITLE: Positive Youth Development Inventory LCA (enumeration);   

DATA: FILE IS PYDI.dat; 

VARIABLE:  

     NAMES ARE hispanic LifeSat PYDI1 PYDI2 PYDI3 PYDI4 PYDI5 PYDI6 PYDI7; 

     MISSING ARE ALL (9999); 

     USEVARIABLES = PYDI1 PYDI2 PYDI3 PYDI4 PYDI5 PYDI6 PYDI7; 

     CATEGORICAL = PYDI1 PYDI2 PYDI3 PYDI4 PYDI5 PYDI6 PYDI7; 

     AUXILIARY = hispanic LifeSat; 

     CLASSES = C1(4); 

ANALYSIS:  

     TYPE = mixture; 

     STARTS = 500 100; 

OUTPUT:  

     tech11 tech14; 

PLOT:  

     TYPE = plot3; 

     SERIES = PYDI1-PYDI7(*); 

SAVEDATA:  

     FILE = PYDI3step.dat; 

     SAVE = cprob; 

     MISSFLAG = 9999; 
Note. The default estimator for mixture models in Mplus is maximum likelihood with robust standard errors 

(MLR). In MISSING ARE ALL, specify how missing data is coded in the dataset. For binary indicators, the 

CATEGORICAL command must be included to specify which items are categorical. In AUXILIARY, include all 

covariates and distal outcomes to be used in step 3. In CLASSES, we name the latent class variable, C1, and 

specify the determined number of classes (e.g., in this step we have already decided that the 4-class solution is our 

final unconditional model). To specify a different number of classes, replace 4 in C1(4) with the desired number 

of classes. In STARTS, 500 indicates the number of random starts and 100 indicates the number of replications 

that will go through full optimization. In OUTPUT, tech11 provides the Vuong-Lo-Mendell-Rubin likelihood 

ratio test (VLMR-LRT) and tech14 provides the bootstrapped likelihood ratio test (BLRT). In PLOT, plot3 

provides all possible plots for a specified model, including item probability plots when estimating mixture 

models. In SERIES, the indicators can be reordered for interpreting the item probability plot. In SAVE, cprob 

indicates that in PYDI3step.dat, the logits of the classification probabilities for the 4-class model will be saved. 
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The (*) in the SERIES command indicates to Mplus to use the default spacing of the indictors along the x-axis 

which is unit separation.  
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Appendix 2:  Mplus Syntax for Step 3 – Estimation of Auxiliary Variable Relations 

 

TITLE: Positive Youth Development Inventory LCA (auxiliary); 

DATA: FILE IS PYDI3step.dat; 

VARIABLE:  

     NAMES ARE hispanic LifeSat  

     PYDI1 PYDI2 PYDI3 PYDI4 PYDI5 PYDI6 PYDI7  

     CPROB1 CPROB2 CPROB3 CPROB4 C; 

     MISSING ARE ALL (9999); 

     USEVARIABLES = C hispanic LifeSat; 

     NOMINAL = C; 

     CLASSES = C1(4); 

DEFINE:  

     CENTER hispanic (GRANDMEAN); 

ANALYSIS:  

     TYPE = mixture; 

     STARTS = 0;   

MODEL:   

     %OVERALL%   

     C1 LifeSat ON hispanic;   

     [LifeSat]; 

     LifeSat; 

        

     %C1#1%   

     [C#1@3.547]; 

     [C#2@-2.222]; 

     [C#3@-4.641];   

     [LifeSat] (d1); 

     LifeSat; 

        

     %C1#2%    

     [C#1@11.149]; 

     [C#2@13.721]; 
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     [C#3@9.942];   

     [LifeSat] (d2); 

     LifeSat; 

        

     %C1#3%   

     [C#1@-2.419]; 

     [C#2@0.818]; 

     [C#3@2.321];   

     [LifeSat] (d3); 

     LifeSat; 

    ….continued on next page …   

     %C1#4%   

     [C#1@-0.241]; 

     [C#2@-13.232]; 

     [C#3@-5.155];   

     [LifeSat] (d4); 

     LifeSat;      

MODEL TEST: 

     0 = d1-d2; 

     0 = d2-d3; 

     0 = d3-d4; 

MODEL CONSTRAINT: NEW(diff12 diff13 diff14 diff23 diff24 diff34); 

     diff12 = d1-d2; 

     diff13 = d1-d3; 

     diff14 = d1-d4; 

     diff23 = d2-d3; 

     diff24 = d2-d4; 

     diff34 = d3-d4; 
Note. The default estimator for mixture models in Mplus is maximum likelihood with robust standard errors 

(MLR).In this run, we are using the dataset saved in the previous run (namely, PYDI3step.dat). In MISSING 

ARE ALL, specify how missing data is coded in the dataset. In DEFINE, the covariate is grand mean-centered 

to ease interpretation of class-specific distal outcomes. In ANALYSIS, STARTS are fixed to 0 in Step 3 as we 

are fixing all measurement parameters in this step and thus do not need random starts.  In %OVERALL%, 

specify model commands that apply to all classes, including regressing the latent class variable and the distal 

outcome onto the covariate (e.g., C1 LifeSat ON hispanic;). We mention the mean and variance of life 
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satisfaction in the overall statement (e.g., [LifeSat]; and LifeSat;, respectively). In the class-specific model 

commands (e.g., “%C1#1%,” “%C1#2%,” etc.), classes are held constant by fixing the logits of the 

classification probabilities for the three-step specification (e.g., [C#1@3.547]; for more on this, see Nylund-

Gibson, Grimm, Quirk, & Furlong, 2014). Additionally, in the class specific statements, we estimate the 

conditional distal outcome means (e.g., we estimate a mean of the distal outcome for each of the latent classes). 

The statement “[LifeSat];” freely estimates the mean of the distal outcome life satisfaction and the command 

“LifeSat;” freely estimates variances for this distal outcome for each of the latent classes (e.g., class-specific 

variances of the distal outcome). We labeled the distal outcome means d1, d2, etc. to allow for the pairwise 

testing of the equality of these means to be specified in a later section of the syntax. In MODEL TEST, by 

mentioning statements testing the equality of all the distal means, Mplus will simultaneously test if all these 

statements are true. This provides an omnibus test (similar to the omnibus F-test in ANOVA) to see there are 

any differences among the distal outcome means. In MODEL CONSTRAINT, we specify and individually test 

the significance of all pairwise comparisons of the distal outcome means across classes to see where the 

significant differences occur.  

 

 


